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The main goal of this paper is to show the connection between optimization
and best approximation when studying vector-valued functions defined on a finite
set. For example, Hausdorff strong unicity for best approximation is shown to be
equivalent to Abadie's constraint qualification for the associated convex quadratic
feasibility problem. � 1999 Academic Press

1. INTRODUCTION

Let I=[1, ..., r] be a finite set with the discrete topology and C(I, Rm)
be the space of vector-valued functions from the index set I to the m-dimen-
sional Euclidean space Rm. Since I has the discrete topology, any function
from I to Rm is continuous. For f in C(I, Rm), we write f =( f1 , ..., fm),
where fj is the j th component function of f. The value of f at i in I is a
vector in Rm: f (i)=( f1(i), ..., fm(i)). Note that we can identify a function f
in C(I, Rm) with an r_m matrix whose i th row is f (i). A natural norm for
functions in C(I, Rm) is the following mixture of the l2 -norm and the
l� -norm,

& f & :=max
i # I

& f (i)&2=max
i # I \ :

m

j=1

( f j (i))2+
1�2

, (1)

where & }&2 denotes the Euclidean norm on Rm.
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Let [g1, ..., gn] be n linearly independent functions in C(I, Rm) and let
G :=span[g1, ..., gn] be the n-dimensional subspace of C(I, Rm) generated
by g1, ..., gn. For a function f # C(I, Rm), consider the best approximation
problem of finding a function g* in G that solves the following minimiza-
tion problem:

min
g # G

& f& g&. (2)

One special case of the above best approximation problem is the best
approximation of complex-valued functions on a finite set I, since C(I, C)
can be identified with C(I, R2) by using the isometric mapping: f1(x)+
if2(x) � ( f1(x), f2(x)), where i=- &1. Brosowski [6, p. 215] also studied
the metric projection in vector-valued function spaces with emphasis on its
connection to parametric semi-infinite optimization. In [20] Pinkus had a
comprehensive analysis of uniqueness of best approximation in more
general vector-valued function spaces.

The set of all best approximations of f in G is denoted as

PG( f ) :=[g* # G: & f& g*&=dist( f, G)], (3)

where dist( f, G) :=ming # G & f& g& denotes the distance from f to G. In
general, PG( f ) contains infinitely many elements. In fact, PG( f ) is a
singleton for every f in C(I, Rm) if and only if G satisfies the generalized
Haar condition introduced by Zukhovitskii and Stechkin [27] (cf. also
[2]). In such a special case, we also have the so-called strong unicity of
order 2 for PG( f ) [2],

& f& g&2�dist( f, G)2+# } dist(g, PG( f ))2 for g # G,

where # is a positive constant.
In the general case when G is a subspace of a normed linear space, we

say that PG( f ) is Hausdorff strongly unique of order :, if there exists a
positive constant # (depending on f, :, and G) such that

& f& g&:�dist( f, G):+# } dist(g, PG( f )): for g # G. (4)

If (4) holds and PG( f ) is a singleton, then we say that PG( f ) is strongly
unique of order :.

Strong unicity was first introduced by Newman and Shapiro [17] when
G is a finite dimensional Haar subspace of C(X, Y ), a Banach space of
continuous functions from a compact Hausdorff space X to Y (which is
either the real line R or the complex plane C). In this setting, PG( f ) is
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always a singleton. Moreover, Newman and Shapiro proved that (4) holds
with :=1 if Y=R and (4) holds with :=2 if Y=C [17]. In addition,
Cline [8] gave a counterexample to show that (4) does not hold in general
for :=1 if G is a finite dimensional Haar subspace of C(X, C). In [23],
Schmidt established (4) for best monotone approximations of f by algebraic
polynomials with :=2. In this case, G is not a subspace but PG( f ) is
always a singleton. Schmidt also used Theorem 7(viii) in this paper with
$=1 and :=2 as the definition of strong unicity of order 1

2. Meanwhile,
Chalmers and Taylor [7] used (4) as the definition of strong unicity of
order 1�:. Theorem 7 in this paper contains many different yet equivalent
formulations of Hausdorff strong unicity of order :, some of which were
called local strong unicity when PG( f ) is a singleton (cf. [1, 10]). The
generalization of strong unicity to the case when PG( f ) is not a singleton
was first studied in [16] and referred to as Hausdorff strong unicity. For
other results on Hausdorff strong unicity, see [3, 19].

The main goal of this paper is to reformulate (2) as a system of convex
quadratic inequalities (Theorem 2) and then to see how the theory on
convex quadratic inequalities is related to the theory on the best approxi
mation problem (2). In particular, we will show that the optimality condition
corresponds to the Kolmogorov criterion (Theorem 6), Hoffman's error
bounds correspond to Hausdorff strong unicity (Theorem 9), and Abadie's
constraint qualification corresponds to the strong Kolmogorov criterion
(Theorem 14). As a consequence, by using recently established theory on
Hoffman's error bounds for approximate solutions of convex quadratic
inequalities [15, 25], we obtain new results on the Hausdorff strong unicity
of PG( f ) (Theorems 9 and 10).

In particular, a Kolmogorov criterion is given for best approximations
(Theorem 6) and a strong Kolmogorov criterion (called strong since it
refers not to unicity but to strong unicity) is given for Hausdorff strong
uniqueness. A strong Kolmogorov criterion of this type was first given in
[4] and in terms of linear functionals in [26] (see also [18]).

2. CONVEX QUADRATIC INEQUALITIES VERSUS
THE BEST APPROXIMATION PROBLEM

Note that each function in the n-dimensional subspace G of C(I, Rm) can
be identified with a vector in Rn. For convenience, for x=(x1 , ..., xn) # Rn,
define

gx := :
n

k=1

xk gk. (5)
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For each fixed f in C(I, Rm) and each fixed index i in I, we introduce the
function

hi (x)=& f (i)& gx(i)&2
2&dist( f, G)2 for x # Rn. (6)

Lemma 1. The function hi (x) defined in (6) is a convex quadratic
function.

Proof. Note that

hi (x)= :
m

j=1
\f j (i)& :

n

k=1

xk gk
j (i)+

2

&dist( f, G)2.

Clearly hi (x) is a quadratic function of x. It is easy to check that Hi (x)=
&�n

k=1 xkgk(i)& f (i)&2 is a convex function of x by using the triangle
inequality for distance and .(t)=t2&dist( f, G)2 is a convex function of t.
Then it follows that hi (x)=(. b Hi)(x) is convex, since (F b H) is a convex
function if H is a convex function on Rn and F is a monotone increasing
and convex function on R (cf. [22, Theorem 5.1; 11, Proposition 2.1.8]).

K

For convex quadratic functions h1(x), ..., hr(x), let us consider the follow-
ing system of convex quadratic inequalities:

hi (x)�0 for i=1, ..., r. (7)

We will use S( f ) to denote the solution set of (7), i.e.,

S( f ) :=[x* # Rn : hi (x*)�0 for i=1, ..., r]. (8)

Then we can prove that (7) is an equivalent reformulation of (2) and thus
the best approximation problem (2) is equivalent to a convex quadratic
feasibility problem.

Theorem 2. For any f # C(I, Rm), PG( f )=[gx* : x* # S( f )], i.e., x* #
S( f ) if and only if gx* # PG( f ).

Proof. Let x* # S( f ). Then hi (x*)�0 for 1�i�r, which implies
& f& gx*&2&dist( f, G)2�0. That is, & f& gx*&�dist( f, G) and gx* # PG( f ).
On the other hand, if gx* # PG( f ), then & f& gx*&�dist( f, G) or & f& gx*&2

&dist( f, G)2�0, which implies hi (x*)�0 for 1�i�r. Thus, x* # S( f ).
This completes the proof of Theorem 2. K

Let ( } , } ) denote the dot product on Rn and let {hi (x) denote the
gradient of hi (x). The following lemma shows a useful relation between
{hi (x) and gx .
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Lemma 3. Let f # C(I, Rm), i # I, and x, x* # Rn. Then

({hi (x*), x)=&2 ( f (i)& gx*(i), gx(i)). (9)

Moreover, gx(i)= gx*(i) if and only if {hi (x*)={hi (x).

Proof. By the chain rule for functions of several variables, we have

�hi (x*)
�xk

=&2 ( f (i)& gx*(i), gk(i)) for 1�k�n, (10)

which implies (9).
By (10), {hi (x*)={hi (x) if and only if

&2 ( f (i)& gx*(i), gk(i))=&2 ( f (i)& gx(i), gk(i)) for 1�k�n,

i.e.,

(gx(i)& gx*(i), gk(i)) =0 for 1�k�n. (11)

Thus, if gx(i)= gx*(i), then (11) holds, which implies {hi (x*)={hi (x). On
the other hand, if {hi (x*)={hi (x), then (11) holds. In particular, we have

&gx(i)& gx*(i)&2
2=(gx(i)& gx*(i), gx(i)& gx*(i))

= :
n

k=1

(xk&x*k)(gx(i)& gx*(i), gk(i))=0,

or gx(i)= gx*(i). K

3. OPTIMALITY CONDITION VERSUS
KOLMOGOROV CRITERION

Let the set of extreme points of ( f &g) for any g in G be denoted by

E( f &g)=[i # I: & f (i)& g(i)&2=& f& g&].

On the other hand, the active index set for x* # S( f ) is defined by
J(x*) :=[i # I: hi (x*)=0]. For x* # S( f ) and gx* # PG( f ), we have

& f (i)& gx*(i)&2
2&& f& gx*&2=& f (i)& gx*(i)&2

2&dist( f, G)2=hi (x*).

(12)
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Thus, J(x*)=E( f &gx*) for x* # S( f ). Moreover, the common extreme
point set for ( f &PG( f )) (or the common active index set for all x* in
S( f )) is

J( f ) := ,
g* # PG( f )

E( f &g*)# ,
x* # S( f )

J(x*). (13)

Note that J( f ) is always nonempty (cf. [14, Lemma 2.2] or Lemma 13 in
the paper).

Theorem 4 (Classical Characterization). Let x* # Rn. Then the following
statements are equivalent.

(i) x* # S( f ).

(ii) There exist %i>0 for i in a nonempty subset J of J(x*) such that

:
i # J

%i {hi (x*)=0. (14)

(iii) gx* # PG( f ).

(iv) There exist %i>0 for i in a nonempty subset J of E( f &gx*) such
that

:
i # J

%i( f (i)& gx*(i), g(i))=0 for g # G. (15)

Proof. Define the convex piecewise quadratic function,

h(x)= max
1�i�n

h i (x).

Then we have the following relation between h(x) and & f& gx&,

& f& gx &2&dist( f, G)2=h(x) for x # Rn. (16)

Thus, h(x)�0 for x # Rn; so x* # S( f ) if and only if h(x*)=0. Hence, S( f )
is the set of (global) minimizers of the convex function h(x) on Rn. By
[22, Theorem 28.3; 11, Theorem 2.2.1, p. 253], x* # S( f ) if and only if

0 # �h(x*), (17)

where �h(x*) denotes the subgradient of h at x*. However, it is known (cf.
[11, Corollary 4.4.4]) that

�h(x*)={ :
i # J(x*)

%i {hi (x*): %i�0, :
i # J(x*)

% i=1= . (18)
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Therefore, (17) holds if and only if (ii) holds. This proves the equivalence
of (i) and (ii).

The equivalence of (i) and (iii) follows from Theorem 2, and the equiv-
alence of (iii) and (iv) is the standard characterization of best approxima-
tions (cf. [9]). This completes the proof of Theorem 4. K

Remark. By (10) and J(x*)=E( f &gx*), it is easy to see that (ii) is just
a reformulation of (iv), which is a version of the characterization of best
approximation given by Rivlin and Shapiro (cf. [21, Theorem 2]). For the
equivalence of more general forms of (ii) and (iv) in any normed linear
spaces, see [24, p. 170].

The characterization (15) for gx* in PG( f ) can be reformulated as the
Kolmogorov criterion. But we first need the following consequence of
Gordon's Theorem (cf. [5, Corollary 1, p. 47]), which is also a conse-
quence of the so-called generalized Farkas Lemma (cf. [11, first comment
on p. 132]).

Lemma 5. Let K be a finite subset of Rn and let co(K) be the convex hull
of K. Then 0 # co(K) if and only if

min
y # K

( y, x)�0 for x # Rn.

Theorem 6 (Kolmogorov Criterion). Let x* # Rn. Then the following
statements are equivalent.

(i) x* # S( f ).

(ii) mini # J(x*) ({hi (x*), x) �0 for x # Rn.

(iii) gx* # PG( f ).

(iv) maxi # E ( f &gx*) ( f (i)& gx*(i), g(i)) �0 for g # G.

Proof. Let K :=[{hi (x*): i # J(x*)]. By Theorem 4, (i) holds if and
only if 0 # co(K). However, by Lemma 5 and the choice of K, we know that
0 # co(K) if and only if (ii) holds. Therefore, (i) is equivalent to (ii). The
equivalence of (i) and (iii) is Theorem 2. Also, by (9) and J(x*)=E( f &gx*),
it is easy to see that (ii) holds if and only if (iv) holds. K

Remark. Notice that the equivalence of (iii) and (iv) is a generalization
of the classical Kolmogorov criterion [13] in the sense that we use the
inner product for vector-valued functions instead of the scalar product for
real-valued functions.
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4. VARIOUS FORMS OF HAUSDORFF STRONG UNICITY

Recall that PG( f ) is called Hausdorff strongly unique of order :, if there
exists a positive constant #( f, :, G) such that

& f& g&:�dist( f, G):+#( f, :, G) } dist(g, PG( f )): for g # G. (19)

The following theorem gives equivalent formulations of (19).

Theorem 7. Let f # C(I, Rm)"G and :�1. Then the following statements
are equivalent.

(i) PG( f ) is Hausdorff strongly unique of order :.

(ii) For any '>0, there exists #(')>0 such that

& f& g&:�dist( f, G):+#(') } dist(g, PG( f )): for g # G, &g&�'.

(iii) For any '>0 and any $>0, there exists #(', $)>0 such that

& f& g&$�dist( f, G)$+#(', $) } dist(g, PG( f )): for g # G, &g&�'.

(iv) For any =>0 and any $>0, there exists #(=, $)>0 such that

& f& g&$�dist( f, G)$+#(=, $) } dist(g, PG( f )):

for g # G, dist(g, PG( f ))�=. (20)

(v) For some =>0 and some $>0, there exists #(=, $)>0 such that
(20) holds.

(vi) For any ;�:, there exists #(;)>0 such that

& f& g&;�dist( f, G);+#(;) } dist(g, PG( f )): for g # G. (21)

(vii) For some ;�:, there exists #(;)>0 such that (21) holds.

(viii) For some fixed $>0 and any '>0, there exists #(', $)>0 such
that

& f& g&$�dist( f, G)$+#(', $) } dist(g, PG( f )): for g # G, &g&�'.

(22)

Proof. For two positive numbers s and t, define

.s, t(g) :=
& f& g&s&dist( f, G)s

& f& g&t&dist( f, G)t
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and

�s, t(g) :=
& f& g&s&dist( f, G)s

dist(g, PG( f ))t .

Then by L'Hôpital's Rule applied to the quotient of real-valued functions

F(w)
G(w)

=
ws&dist( f, G)s

wt&dist( f, G)t ,

we get

lim
dist(g, PG ( f )) � 0

.s, t(g)=
s } dist( f, G)s&1

t } dist( f, G)t&1>0.

Thus, there exist positive constants =(s, t) and }(s, t) such that

.s, t(g)�}(s, t) for g # G, dist(g, PG( f ))�=(s, t). (23)

Let s�t>0, &g&>& f &, and g* # PG( f ). Then

�s, t(g)�
& f& g&s&& f& g*&s

&g& g*&t �
(&g&&& f &)s&& f& g*&s

(&g&+&g*&)t

�
(&g&&& f &)s&& f& g*&s

(&g&+&g*&+1)t �
(&g&&& f &)s&& f& g*&s

(&g&+&g*&+1)s .

It follows that

lim inf
&g& � �

�s, t(g)� lim
&g& � �

(&g&&& f &)s&& f& g*&s

(&g&+&g*&+1)s =1.

Thus, for any s�t>0, there exists a positive constant '(s, t) such that

�s, t(g)� 1
2 for g # G, &g&�'(s, t). (24)

For any '>0 and =>0, .s, t(g) and �s, t(g) are positive continuous
functions on the compact subset [g # G: dist(g, PG( f ))�=, &g&�']. Thus,
there is a positive constant *(s, t, =, ') such that

.s, t(g)�*(s, t, =, ') for g # G, dist(g, PG( f ))�=, &g&�', (25)

�s, t(g)�*(s, t, =, ') for g # G, dist(g, PG( f ))�=, &g&�'. (26)

Now we are ready to prove the equivalence of all the statements.
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(i) O (ii). It is obvious that (i) implies (ii).

(ii) O (iii). For any '>0 and any $>0, by applying (23) and (25)
with s=$, t=:, and ===($, :), we get that for g # G with &g&�',

& f& g&$&dist( f, G)$

�min[}($, :), *($, :, =($, :), ')](& f& g&:&dist( f, G):).

Thus, (ii) implies (iii) with #($, ')=#(') min[}($, :), *($, :, =($, :), ')].
(iii) O (iv) O (v). It is easy to see that (iii) O (iv) O (v).
(v) O (vi). Let ;�:. Then (24) holds for s=; and t=:. That is,

& f& g&;�dist( f, G);

+1
2 dist(g, PG( f )): for g # G, &g&�'(;, :). (27)

By applying (23) with s=; and t=$, we get

& f& g&;&dist(( f, G);

�}(;, $)(& f& g&$&dist( f, G)$) for g # G, dist(g, PG( f ))�=,

which, along with (v), implies

& f& g&;&dist( f, G);�}(;, $) } #($, =) } dist(g, PG( f )):

for g # G, dist(g, PG( f ))�=. (28)

By applying (26) with s=;, t=:, and '='(;, :), we get that

& f& g&;&dist( f, G);�*(;, $, =, '(;, :)) } dist(g, PG( f )):, (29)

whenever g # G, dist(g, PG( f ))�=, and &g&�'(;, :). Thus, (vi) follows
from (27)�(29). This proves that (v) implies (vi).

(vi) O (vii). It is obvious that (vi) implies (vii).

(vii) O (i). Note that (vii) implies (v) with $=;. By (v) O (vi) and
(vi) O (i), we know that (vii) O (i).

(viii) � (i). It is obvious that (iii) O (viii). Since (i) � (iii), we have
(i) O (viii). On the other hand, (viii) O (v). By (v) � (i), we get (viii) O (i).

K

Remark. The proof of the above theorem is valid if G is a finite-dimen-
sional subspace of any normed linear space. When :=2, $=1, and m=2
(i.e., C(I, C)), Newman and Shapiro also stated what is easily seen to be
equivalent to Theorem 7(viii) as a characterization of strong unicity of
order 1

2.
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5. HOFFMAN'S ERROR BOUNDS VERSUS
HAUSDORFF STRONG UNICITY

In this section, we show that Hausdorff strong unicity corresponds to
Hoffman's error bounds for approximate solutions of convex quadratic
inequalities (7). Then by using the reformulation (7) of (2) and a result on
Hoffman's error bounds for convex quadratic inequalities [25], we prove
that PG( f ) is always Hausdorff strongly unique of order 2m+1.

Lemma 8. There is a positive constant c such that

1
c

} &x&2�&gx&�c } &x&2 for x # Rn,

(30)

1
c

} dist(x, S( f ))�dist(gx , PG( f ))�c } dist(x, S( f )) for x # Rn.

(31)

Proof. Since [g1, ..., gn] is a basis of G, for any x # Rn, &x&2 is also a
norm for the function gx in G. Therefore, there exists a positive constant c
such that (30) holds, since any two norms on the finite-dimensional sub-
space G are equivalent. By Theorem 2, we obtain

dist(gx , PG( f ))= min
g* # PG ( f )

&gx& g*&= min
x* # S( f )

&gx& gx*&. (32)

By (30), we obtain

1
c

} dist(x, S( f ))=
1
c

} min
x* # S( f )

&x&x*&2� min
x* # S( f )

&gx& gx*&

�c } min
x* # S( f )

&x&x*&2�c } dist(x, S( f )).

This, along with (32), proves (31). K

By Lemma 8, we can reformulate Hausdorff strong unicity of order : in
terms of Hoffman's error bounds.

Theorem 9. Let f # C(I, Rm)"G and :�1. Then the following statements
are equivalent.

(i) PG( f ) is Hausdorff strongly unique of order :.

(ii) There exists *>0 such that

dist(x, S( f ))�*( max
1�i�r

hi (x)+[ max
1�i�r

hi (x)]1�:) for x # Rn. (33)
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(iii) For any '>0, there exists *(')>0 such that

dist(x, S( f ))�*(')( max
1�i�r

hi (x))1�: for x # Rn, &x&2�'. (34)

Proof. Let h(x)=max1�i�r hi (x). Then

& f& gx &2&dist( f, G)2=h(x) for x # Rn. (35)

By Theorem 7, PG( f ) is Hausdorff Strongly unique of order : if and only
if for any '̂>0, there is a positive constant #('̂) such that

& f& gx &2&dist( f, G)2�#('̂) } dist(gx , PG( f )): for x # Rn, &gx &�'̂.

(36)

By (35) and Lemma 8, (36) holds if and only if for any '>0, there is a
positive constant *(') such that

dist(x, S( f )):�*(') } h(x) for x # Rn, &x&2�'. (37)

This proves the equivalence of (i) and (iii).

(ii) O (iii). For any '>0, since the continuous function h(x) is
bounded on the compact set [x # Rn : &x&2�'], there is a positive constant
}(') such that h(x)�}(') for &x&2�'. Thus, it follows from (ii) that

dist(x, S( f ))�*(h(x)+h(x)1�:)�*(h(x)1�: }(') (:&1)�:+h(x)1�:)

=*(}(') (:&1)�:+1) h(x)1�:,

whenever &x&2�'. So, (iii) holds.

(iii) O (ii). By applying (24) with s=2 and t=1, there is a positive
constant '̂ such that

h(x)� 1
2 } dist(gx , PG( f )) for &gx&�'̂.

By (30) and (31), the above inequality implies

h(x)�
1
2c

} dist(x, S( f )) for &x&2�c'̂. (38)

By applying (iii) with '=c'̂, we obtain

dist(x, S( f ))�*(c'̂) } h(x)1�: for x # Rn, &x&2�c'̂. (39)

It follows from (38) and (39) that (ii) holds with *=max[c'̂, 2c]. K
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Remark. When :=1 and the functions hi are affine functions, (33) is
the original Hoffman's error bound for approximate solutions of linear
inequalities [12].

In general, (33) does not hold for :=1 [15, 25]. However, it follows
from a general result on error bounds for approximate solutions of convex
quadratic inequalities by Wang and Pang [25] that (33) holds with
:=2m+1. Then by Theorem 9 we obtain the following result on Hausdorff
strong unicity of order 2m+1.

Theorem 10 [25]. For any f and G, (33) holds with :=2m+1. That is,
PG( f ) is Hausdorff strongly unique of order 2m+1.

6. ABADIE'S CONSTRAINT QUALIFICATION VERSUS
THE STRONG KOLMOGOROV CRITERION

Definition 11. We say that the convex quadratic inequality system (7)
satisfies Abadie's constraint qualification if

NS( f )(x*)={ :
i # J(x*)

%i {h i (x*): %i�0= for x* # S( f ), (40)

where NS( f )(x*) is the normal cone of S( f ) at x* defined as

NS( f )(x*) :=[ y # Rn : ( y, z&x*) �0 for z # S( f )].

Remark. It is always true that

NS( f )(x*)#{ :
i # J(x*)

%i {h i (x*): %i�0= for x* # S( f ). (41)

Thus, (40) is actually equivalent to

NS( f )(x*)/{ :
i # J(x*)

%i {h i (x*): %i�0= for x* # S( f ). (42)

Lemma 12 [15, Theorem 12]. The convex quadratic inequality system
(7) satisfies Abadie's constraint qualification if and only if there is a positive
constant * such that

dist(x, S( f ))�* } max
1�i�r

(h i (x))+ for x # Rn. (43)
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Recall that J( f ) denotes the common extreme point set for ( f &PG( f )).
The following result about J( f ) is known (cf. [14, Lemma 2.2]). In fact,
any g* in the relative interior of PG( f ) satisfies (44).

Lemma 13. For any f # C(I, Rm), there exists a function g* in PG( f )
such that

E( f &g*)=J( f )/[i # I: g*(i)= g(i) for all g # PG( f )]. (44)

Theorem 14. Let f # C(I, Rm)"G and x* # S( f ). Then the following
statements are equivalent.

(i) The convex quadratic inequality system (7) satisfies Abadie's
constraint qualification.

(ii) The following strong Kolmogorov criterion is satisfied,

max
i # J( f )

( f (i)& gx*(i), g(i))>0, (45)

whenever g # G is not identical to 0 on J( f ).

(iii) The following strong Kolmogorov criterion is satisfied,

min
i # J( f )

({hi (x*), x) <0, (46)

whenever gx is not identical to 0 on J( f ).

(iv) Hoffman's error bound (43) holds.

(v) PG( f ) is Hausdorff strongly unique (of order :=1).

Proof. Let x* denote the particular element in S( f ) given in Lemma 13
so that we have

hi (x*)<0 for i � J( f ). (47)

By Theorem 9 and Lemma 12, we know that (i) � (iv) � (v). By (9) we
know that (ii) is equivalent to (iii).

Next we prove (iii) O (i). Consider the following system of linear
equalities and convex quadratic inequalities:

({hi (x*), x&x*) =0 for i # J( f ) and hi (x)�0 for i � J( f ).

(48)

If x # S( f ), then gx(i)& gx*(i)=0 for i # J( f ) (cf. Lemma 13). By (9), we
have

J( f )=[i # J( f ): ({hi (x*), x&x*) =0] for x # S( f ). (49)
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Thus, x satisfies (48). On the other hand, assume that x satisfies (48). By
(iii), the first set of equalities in (48) implies gx(i)= gx*(i) for i # J( f ).
Thus, hi (x)=h i (x*)�0 for i # J( f ). This, along with the second set of
inequalities in (48), implies x # S( f ). Thus, S( f ) is the set of solutions to
(48). By (47), (48) satisfies the weak Slater condition and hence Abadie's
constraint qualification (cf. [11, p. 311]),

NS( f )(x)={ :
i # J( f )

% i {hi (x*)+ :
i # J� (x)"J( f )

%i {h i (x): %i�0=
for x # S( f ), (50)

where

J� (x)=[i � J( f ): hi (x)=0] _ J( f ).

Since J( f )/J(x) for x # S( f ), we have J� (x)=J(x). Thus, we get the
following representation of NS( f )(x):

NS( f )(x)={ :
i # J(x)

%i {hi (x): % i�0= for x # S( f ).

That is, (7) satisfies Abadie's constraint qualification.
Finally, we prove that (v) implies (ii). If (ii) does not hold, then there

exists ĝ # G and @� # J( f ) such that ĝ(@� ){0 but

max
i # J( f )

( f (i)& gx*(i), ĝ(i))�0, (51)

By (47), there is a positive constant = such that

& f (i)&[ gx*(i)&tĝ(i)]&2
2<dist( f, G)2 for i � J( f ), 0�t�=. (52)

For i # J( f ), we have

& f (i)&[ gx*(i)&tĝ(i)]&2
2=& f (i)& gx*(i)&2

2

+2t( f (i)& gx*(i), ĝ(i)) +t2 &ĝ(i)&2
2 . (53)

It follows from (51) and (53) that

& f (i)&[ gx*(i)&tĝ(i)]&2
2�dist( f, G)2+t2 &ĝ(i)&2

2 for i # J( f ). (54)

Thus, by (52) and (54), we obtain

& f&[ gx*&tĝ]&2�dist( f, G)2+t2 &ĝ&2 for 0�t�=. (55)
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However, by Lemma 13,

dist([ gx*&tĝ], PG( f ))�&[ gx*(@� )&tĝ(@� )]& gx*(@� )&2=t &ĝ(@� )&2 . (56)

But by (v) and Theorem 7, there is a positive constant # such that

& f& g&2�dist( f, G)2+# } dist(g, PG( f )) for g # G. (57)

Replacing g by [ gx*&tĝ] in (57) and using inequalities (55) and (56), we
get

dist( f, G)2+t2 &ĝ&2�dist( f, G)2+t# &ĝ(@� )&2 for 0�t�=,

i.e.,

t &ĝ&2�# &ĝ(@� )&2 for 0�t�=,

which is impossible since # &ĝ(@� )&2>0. The contradiction proves that (ii)
holds. K

Remark. The classical strict Kolmogorov criterion is given in the
following way [18],

max
i # E( f &gx*)

( f (i)& gx*(i), g(i))>0 for g # G, (58)

which is usually used to study the uniqueness of best approximation [18,
Lemma 2.1]. However, in our special setting, E( f &gx*) is a finite set. As
a consequence, (58) is equivalent to the following strong Kolmogorov
criterion,

max
i # E( f &gx*)

( f (i)& gx*(i), g(i))�; &g& for g # G, (59)

where ; is a positive constant. By the characterization of strongly unique
best approximation by Wulbert [26] for real normed linear spaces or by
Bartelt and McLaughlin [4] for complex normed linear spaces, PG( f ) is
strongly unique (of order :=1) if and only if (59) (or (58)) holds. Thus,
the equivalence of (ii) and (v) can be considered as an extension of the
Wulbert�Bartelt�McLaughlin characterization of strong unicity in a set-
valued setting.

In infinite dimensional cases, the strong Kolmogorov criterion given in
Theorem 14(ii) does not always guarantee strong uniqueness. For example,
Bartelt and McLaughlin [4] constructed an infinite dimensional subspace
G of C(X, R) and a function f in C(X, R) such that Theorem 14(ii) holds,
PG( f )=[0], but PG( f ) is not strongly unique.
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A special case of Theorem 14 is when PG( f ) is a singleton. Then the
characterization of strong unicity of PG( f ) can be simplified as shown in
the following corollary.

Corollary 15. Let f # C(I, Rm)"G and x* # Rn. Then gx* is a strongly
unique best approximation (of order :=1) to f in G if and only if

{ :
i # J(x*)

%i {hi (x*): %i�0==Rn. (60)

Proof. If (60) holds, then x* # S( f ) (cf. Theorem 4). Thus, it follows
from (41) and (60) that

NS( f )(x*)={ :
i # J(x*)

%i {hi (x*): % i�0==Rn.

This implies S( f )=[x*]. Moreover, by Theorem 14 (cf. Definition 11),
PG( f ) is Hausdorff strongly unique. From Theorem 2 we know that PG( f )
=[gx*] is a singleton. So PG( f ) is strongly unique.

On the other hand, if PG( f )=[gx*] is strongly unique, then S( f )=
[x*] and NS( f )(x*)=Rn. By Theorem 14 and strong unicity of PG( f ), we
obtain

{ :
i # J(x*)

%i {hi (x*): %i�0==NS( f )(x*).

Thus, (60) holds. K
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